

Risk Factors Leading To Cerebral Stroke

*Matyokubov Murod Otajonovich, Jabbarov Marks Taxirovich, Bobojanov Umidjon
Adilbekovich*

Urgench State Medical Institute, Urgench, Uzbekistan

Abstract: Stroke is a major global health problem with high rates of morbidity and mortality. Key modifiable risk factors include hypertension, diabetes mellitus, smoking, alcohol abuse, obesity, and atrial fibrillation, while non-modifiable factors comprise age, sex, and genetic predisposition. Hypertension and smoking remain the strongest predictors, and comorbid conditions significantly worsen prognosis. Effective prevention strategies targeting modifiable factors are crucial to reducing the global burden of stroke.

Keywords: stroke, risk factors, hypertension, diabetes mellitus, smoking, prevention.

Epidemiological studies have identified a wide range of risk factors for stroke, which are of great importance in both primary and secondary prevention. Stroke risk factors can be divided into two groups: modifiable and non-modifiable. Modifiable risk factors include hypertension, diabetes mellitus, hypercholesterolemia, cardiovascular diseases, physical inactivity, atrial fibrillation, smoking, and alcohol consumption [41, 59]. Non-modifiable risk factors are fewer in number and include age, sex, race, and heredity [12, 52].

Constitutional Risk Factors for Stroke. Age is a powerful determinant of stroke, with the risk doubling every decade after the age of 55. Age can also be regarded as a marker for the duration of exposure to other risk factors [22, 23, 24, 54].

Moreover, stroke is increasingly being observed among younger populations worldwide, leading to serious physical, psychological, and social consequences. Among young individuals, the prevalence of obesity, physical inactivity, alcohol consumption, and dyslipidemia as risk factors has risen [5, 10, 27]. The incidence of hemorrhagic stroke is also higher among young and middle-aged individuals, resulting

in increased mortality and disability rates. In fact, disability has been reported to increase up to tenfold [4, 6, 19]. On the other hand, improved diagnostic capabilities have also contributed significantly to the higher reported incidence of stroke in this population group [3, 25].

International studies confirm that certain risk factors predominate depending on age. For example, arterial hypertension is considered a major risk factor in middle-aged and elderly individuals; however, as age advances, the relative importance of hypertension decreases, while other risk factors such as atrial fibrillation and atherosclerosis become more prominent [11, 26].

In older individuals, stroke is predominantly associated with atherosclerotic changes, accounting for up to 70% of cases. Reduced myocardial contractility is also of considerable importance, being observed in up to 50% or more of patients. Atrial fibrillation, in particular, has been documented in 90% of elderly patients [31, 33].

In acute cerebrovascular accidents, the second most important constitutional risk factor is sex [12, 56]. Many studies have reported that stroke occurs more frequently among men than women. According to meta-analysis results, stroke is 33% more common in men compared to women, confirming male sex as a reliable risk factor [2, 57]. However, certain characteristics show that the male predominance is greatest at ages 35–44 and declines by the age of 75 [43, 60].

Genetic predisposition. A family history of ischemic heart disease, stroke, or arterial hypertension is considered a significant cardiovascular risk factor. Having first-degree relatives with acute cerebrovascular disease increases the risk of stroke by 1.5–1.7 times compared with individuals without such family history [34, 63].

Modifiable risk factors for stroke. Arterial hypertension (AH) is the strongest modifiable risk factor for stroke. Patients with hypertension are 3–4 times more likely to develop stroke [7, 20]. Each 7 mmHg increase in systolic blood pressure above the age-adjusted norm doubles the risk of stroke [37]. According to a meta-analysis covering the period 1980–2002, the prevalence of hypertension in the adult global population was 26.4%. Predictive estimates suggest that by 2025 this figure will reach

60%, and the increasing prevalence of hypertension will significantly elevate the likelihood of stroke. Among stroke patients, hypertension is observed twice as frequently as in the general population [51,65].

Hypercholesterolemia, together with hypertension and smoking, has been proven to be a major modifiable risk factor contributing to cerebrovascular and cardiovascular diseases [18, 38, 44].

The impact of smoking on stroke incidence. Stroke among hypertensive smokers is twice as common compared to hypertensive non-smokers, regardless of nicotine dose. Furthermore, studies show that even after controlling for other risk factors, smoking independently increases stroke risk, particularly ischemic stroke. Stroke risk rises with the number of cigarettes smoked. The relative risk of stroke among “heavy smokers” (over 40 cigarettes/day) is twice as high compared to “light smokers” (<10 cigarettes/day). Smoking has been shown to increase the risk of subarachnoid hemorrhage (SAH) 2–4 times. Importantly, stroke risk declines after smoking cessation, decreasing within 2 years and equaling that of non-smokers after 5 years [48].

Diabetes mellitus (DM) is one of the major independent risk factors for both primary and recurrent stroke. Stroke incidence in men with diabetes is 1.5–4 times higher, and in women 2–6 times higher, compared to non-diabetic individuals of the same age [21, 50].

The prevalence of diabetes among stroke patients ranges from 11% to 43%, compared to 4–6% in the general population. In diabetic patients over 65 years of age, stroke is considered the second most common complication after ischemic heart disease. The importance of diabetes as a stroke risk factor has been steadily increasing worldwide in recent years. Among diabetic patients, lacunar ischemic stroke is the most frequent subtype. However, the risk of hemorrhagic stroke in diabetic patients does not significantly differ from that of the general population [47].

In patients with diabetes mellitus (DM), the course of stroke tends to be more severe and leads to worse outcomes. Stroke-related mortality among diabetic patients

is 2–5 times higher compared to non-diabetic patients, both during hospitalization and in the long term. Individuals with diabetes demonstrate increased susceptibility to atherosclerosis, elevated levels of pro-atherogenic factors, and atypical lipid profiles. Understanding this interrelationship largely defines the strategies for both treatment and prevention [16,64].

Cardiac diseases of ischemic origin are also important risk factors for stroke. For instance, patients with cardiac arrhythmias have a 3.5-fold increased risk of stroke, while those with a history of myocardial infarction face a 2.9–5-fold higher risk [15]. Chronic or paroxysmal atrial fibrillation (AF), even in the absence of valvular heart disease, raises the risk of ischemic stroke 4–5 times. Thromboembolism due to AF accounts for about 10% of ischemic strokes, predominantly in the elderly. The presence of AF worsens stroke severity and prognosis. In some cases, AF is first diagnosed at the time of stroke onset [1,14,66].

Among modifiable risk factors, obesity also plays a considerable role. Numerous studies have shown that increased body mass index (BMI) elevates the risk of cardiovascular diseases, including ischemic heart disease and stroke. However, in recent years, the assessment strategy for physical condition has shifted. It is now recognized that not only elevated body weight but also waist circumference (abdominal obesity) is a major determinant. A waist circumference greater than 80 cm in women and 94 cm in men is associated with arterial hypertension [40,49,67], which itself is a leading risk factor for cardiovascular diseases. It should be noted that when obesity and body weight gain are studied as risk factors for stroke, emphasis is rarely placed on the specific type of cerebrovascular disease. This is due to the multifactorial pathogenic influence of obesity on stroke [8, 28, 36, 46].

Alcohol abuse is another established risk factor for both ischemic and hemorrhagic stroke. Alcohol negatively affects the cardiovascular system and blood coagulation [55, 62]. There is evidence that small doses of alcohol may exert neuroprotective and cardioprotective effects due to antithrombotic properties; however, contrary to earlier assumptions, alcohol does not possess anti-atherosclerotic

effects [42]. On the other hand, high alcohol intake has been consistently associated with a marked increase in both primary and recurrent stroke incidence. It has also been shown that the risk of subarachnoid and intracerebral hemorrhage is three times higher among alcohol abusers compared to non-drinkers [55]. Lifelong regular consumption of high doses of alcohol significantly increases the probability of ischemic stroke [13, 30].

The combined impact of multiple risk factors further increases the likelihood of stroke. Comorbidities are present in 74.5% of all stroke cases. Some authors report that the combination of hypertension and diabetes is observed in 22.7% of stroke patients. The coexistence of DM, post-infarction cardiosclerosis, and hypertension has been documented in 7.8% of cases. According to research findings, an increase in comorbidity burden is positively correlated with worse functional outcomes and higher mortality rates [39].

A number of other potential risk factors for stroke have been proposed, although they are less well documented. These include the use of oral contraceptives, vasculitis, inflammatory processes, migraine, sleep apnea, deficiency of prothrombin activator complex, hypotension, elevated C-reactive protein, and neurocysticercosis [9, 29, 32, 35, 58].

The rising incidence of stroke is closely associated with the population's insufficient awareness of stroke risk factors and their warning signs. Raising awareness about the risk factors leading to stroke encourages adherence to preventive measures, while knowledge of early symptoms facilitates timely hospitalization of patients in appropriate medical facilities [53, 61].

International studies have reliably demonstrated that 10 major risk factors account for 88.1% of all stroke cases. The key risk factors for all types of stroke include hypertension, smoking, abdominal obesity (waist-to-hip ratio), unhealthy diet, insufficient physical activity, diabetes mellitus, alcohol abuse, psychological stress and depression, heart disease, and dyslipidemia [17, 22, 23, 24, 45, 52].

Conclusion. Analysis of the scientific literature demonstrates that hypertension remains one of the leading stroke risk factors worldwide, regardless of racial differences. The future is expected to bring a further increase in stroke incidence, especially in high-risk countries, highlighting the urgent need to improve awareness of risk factors.

At present, it has been firmly established that preventing stroke is easier and more effective than attempting complete treatment after its onset. Therefore, stroke prevention strategies must focus on reducing modifiable risk factors across society.

References

1. Adilbekovich, B. U., & Yuldashevna, A. R. (2025). EPIDEMIOLOGICAL CHARACTERISTICS AND AGE-RELATED CLINICAL ASPECTS OF EPILEPSIA IN CHILDREN. *Научный Импульс*, 4(40), 197-200.
2. Adilbekovich, B. U., & Yuldashevna, A. R. (2025). ETHIOPATHOGENESIS IN CHILDREN'S EPILEPSIA: MODERN VIEWS AND THE CONCEPT OF EPILEPTIC NEURON NETWORKS. *Научный Импульс*, 4(40), 211-215.
3. Adilbekovich, B. U., & Yuldashevna, A. R. (2025). EVALUATION OF EPILEPSIA AND EPILEPTIC SYNDROMES BASED ON THE CLASSIFICATION OF EPILEPTIC SEIZURE ILAE 2025. *Научный Импульс*, 4(40), 201-205.
4. Adilbekovich, B. U., & Yuldashevna, A. R. (2025). INTERACTION OF ECOLOGICAL FACTORS AND GENETIC PREDISPOSITION IN CHILDREN'S EPILEPSIA. *Научный Импульс*, 4(40), 206-210.
5. Akhmedova, R. Y., Sodiqova, G. Q., & Fayzullayev, B. R. (2025). Prevention, Treatment, and Development of Differential Diagnostic Criteria for Symptomatic Epilepsy in the Early Stages Based on EEG Features and Laboratory Changes in Children with Febrile Seizures. *American Journal of Medicine and Medical Sciences*, 15(6), 1704-1710.
6. Armaganian L. et al. New pharmacotherapy for stroke prevention in atrial fibrillation: update 2010 //Advances in therapy. – 2009. – Т. 26. – С. 1058-1071.

7. Asdaghi N. et al. Sex disparities in ischemic stroke care: FL-PR CReSD study (Florida–Puerto Rico Collaboration to Reduce Stroke Disparities) //Stroke. – 2016. – Т. 47. – №. 10. – С. 2618-2626.
8. Avozmetov, J. E. (2020). Influence of a Genetically Modified Organism on the rat's hepatobiliary system. European journal of Molecular & Clinical Medicine, 7(8), 1235-1237.
9. Avozmetov, J. E. (2021). ASSESSMENT OF THE EFFECT OF GENETICALLY MODIFIED FOODS ON HUMAN BODY. In НАУКА И СОВРЕМЕННОЕ ОБЩЕСТВО: АКТУАЛЬНЫЕ ВОПРОСЫ, ДОСТИЖЕНИЯ И ИННОВАЦИИ (pp. 116-118).
10. Béjot Y., Delpont B., Giroud M. Rising stroke incidence in young adults: more epidemiological evidence, more questions to be answered //Journal of the American Heart Association. – 2016. – Т. 5. – №. 5. – С. e003661.
11. Cabral N. L. et al. Increase of stroke incidence in young adults in a middle-income country: a 10-year population-based study //Stroke. – 2017. – Т. 48. – №. 11. – С. 2925-2930.
12. Dulicek P. et al. Analysis of risk factors of stroke and venous thromboembolism in females with oral contraceptives use //Clinical and Applied Thrombosis/Hemostasis. – 2018. – Т. 24. – №. 5. – С. 797-802.
13. Egamberganovich, A. J. (2020). Influence of a genetically modified organism on the Rat's hepatobiliary system. European Journal of Molecular and Clinical Medicine, 7(8), 1235-1241.
14. Egamberganovich, A. J. (2021, March). EVALUATION OF THE EFFECT OF A GENETICALLY MODIFIED PRODUCT ON THE MORPHOLOGICAL PARAMETERS OF THE LIVER OF LABORATORY ANIMALS. In Archive of Conferences (Vol. 17, No. 1, pp. 114-118).
15. Ekker M. S. et al. Stroke incidence in young adults according to age, subtype, sex, and time trends //Neurology. – 2019. – Т. 92. – №. 21. – С. e2444-e2454.

16. Goto S. et al. Prevalence, clinical profile, and cardiovascular outcomes of atrial fibrillation patients with atherothrombosis //American heart journal. – 2008. – T. 156. – №. 5. – C. 855-863. e2.
17. Hosomi N. et al. Desirable low-density lipoprotein cholesterol levels for preventing stroke recurrence: a post hoc analysis of the J-STARS study (Japan statin treatment against recurrent stroke) //Stroke. – 2018. – T. 49. – №. 4. – C. 865-871.
18. Hudayberganov, N. Y., Jabbarov, M. T., & Matyoqubov, M. O. (2017). THE ROLE AND SIGNIFICANCE OF TRANSIENT CEREBRAL CIRCULATION DISORDERS IN THE DEVELOPMENT OF CEREBRAL STROKES IN EMERGENCY NEUROLOGY. ACTUAL PROBLEMS OF MODERN SCIENCE, EDUCATION AND TRAINING IN THE REGION, 2, 131.
19. Ibodullayev, Z., & Ollaberganova, R. (2025). FERTIL YOSHDAGI GIPOTERIOZ KUZATILGAN AYOLLARDA PSIXOEMOTSIONAL BUZILISHLAR STRUKTURASI VA KOGNITIV-BEXAVIORAL TERAPIYANING SAMARADORLIGI. SOUTH ARAL SEA MEDICAL JOURNAL, 1(3), 22-27.
20. Jiang L. et al. Translating the diabetes prevention program into American Indian and Alaska native communities: results from the special diabetes program for Indians diabetes prevention demonstration project //Diabetes care. – 2013. – T. 36. – №. 7. – C. 2027-2034.
21. Johnson C. O. et al. Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016 //The Lancet Neurology. – 2019. – T. 18. – №. 5. – C. 439-458.
22. Jousilahti P. et al. 40-year CHD mortality trends and the role of risk factors in mortality decline: the North Karelia project experience //Global heart. – 2016. – T. 11. – №. 2. – C. 207-212.
23. Kilichev, I. A., Matyokubov, M. O., Adambaev, Z. I., Khudayberganov, N. Y., & Mirzaeva, N. S. (2023). Register of stroke in the desert-steppe zones of Uzbekistan. In BIO Web of Conferences (Vol. 65, p. 04002). EDP Sciences.

24. Kilichev, I. A., Matyokubov, M. O., Khudayberganov, N. Y., & Adambaev, Z. I. (2013). BRAIN STROKES IN ECOLOGICALLY UNFAVORABLE AREAS OF THE ARAL SEA REGION. *Schizophr. Bull.*, 3, 413-430.
25. Klicheva, T. A., Duschanova, Z. A., Shamuratova, G. B., & Salayeva, Z. S. (2021). Iron Deficiency Anemia in Children with Chronic Gastroduodenal Pathology. *Annals of the Romanian Society for Cell Biology*, 25(1), 4424-4428.
26. Li F. et al. Oral contraceptive use and increased risk of stroke: A dose-response meta-analysis of observational studies. *Front Neurol.* 2019;(10): 993 [Электронный ресурс].
27. Mirdjuraev, E. M., Djabbarov, A. M., Kilichev, I. A., Khudayberganov, N. Y., & Shamuratova, G. B. (2021). Diagnostics and Treatment of Dorsalgia at the Military Servicemen of the Emergency Military Service. *Annals of the Romanian Society for Cell Biology*, 25(2), 3039-3045.
28. Muntner P. et al. Trends in blood pressure control among US adults with hypertension, 1999-2000 to 2017-2018 //Jama. – 2020. – Т. 324. – №. 12. – С. 1190-1200.
29. Ng M. et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013 //The lancet. – 2014. – Т. 384. – №. 9945. – С. 766-781.
30. Qilichev, I. A., Matmurodov, R. J., & Mirzaeva, N. S. (2020). Dynamics Of Neuropsychological Disorders In Patients With Light Cranio-Brain Injury. *Solid State Technology*, 63(6), 15202-15209.
31. Rehm J., Taylor B., Patra J. Volume of alcohol consumption, patterns of drinking and burden of disease in the European region 2002 //Addiction. – 2006. – Т. 101. – №. 8. – С. 1086-1095.
32. Savitz S. I. et al. Stem cells as an emerging paradigm in stroke 3 //Stroke. – 2014.
33. Stanaway J. D. et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global

Burden of Disease Study 2017 //The Lancet. – 2018. – Т. 392. – №. 10159. – С. 1923-1994.

34. Syamlal G., Mazurek J. M., Dube S. R. Gender differences in smoking among US working adults //American journal of preventive medicine. – 2014. – Т. 47. – №. 4. – С. 467-475.
35. TRENDS O. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999-2010 //Jama. – 2012. – Т. 307. – №. 5. – С. 491-497.
36. Winovich D. T. et al. Factors associated with ischemic stroke survival and recovery in older adults //Stroke. – 2017. – Т. 48. – №. 7. – С. 1818-1826.
37. Zeng Y. et al. Knowledge of stroke warning signs and risk factors among patients with previous stroke or TIA in China //Journal of clinical nursing. – 2012. – Т. 21. – №. 19pt20. – С. 2886-2895.
38. Zoxirjonovna, I. Z. R. O. R. (2025). PECULIARITIES OF HOSTILITY AND AGGRESSION IN FERTILE-AGED PATIENTS DIAGNOSED WITH HYPOTHYROIDISM. Confrencea, 9(9), 66-72.
39. Авозметов, Ж. (2021). Структурные и морфологические изменения в поджелудочной железе крыс после введения генетически модифицированного продукта. Общество и инновации, 2(7/S), 204-209.
40. Авозметов, Ж. Э. (2021). МОРФОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ВОЗДЕЙСТВИЯ ГЕННО-МОДИФИЦИРОВАННОГО ПРОДУКТА НА ПЕЧЕНЬ В ЭКСПЕРИМЕНТЕ. In WORLD SCIENCE: PROBLEMS AND INNOVATIONS (pp. 153-155).
41. Авозметов, Ж. Э. TIBBIYOTDA ANGI KUN. TIBBIYOTDA ANGI KUN Учредители: Бухарский государственный медицинский институт, ООО" Новый день в медицине", (4), 9-11.
42. Авозметов, Ж. Э., & Хасанова, Д. А. (2021). НОВЫЙ ДЕНЬ В МЕДИЦИНЕ. НОВЫЙ ДЕНЬ В МЕДИЦИНЕ Учредители: Бухарский государственный медицинский институт, ООО" Новый день в медицине", (3), 392-397.

43. Адамбаев, З. И., & Киличев, И. А. (2016). Востребованность стационарзамещающих амбулаториев в лечении и реабилитации больных с дегенеративными заболеваниями позвоночника в Узбекистане. *Проблемы современной науки и образования*, (5 (47)), 231-236.
44. Адамбаев, З. И., & Киличев, И. А. (2016). Эффективность тракционной терапии при дегенеративно-дистрофических заболеваниях позвоночника. *Терапевтический вестник Узбекистана*, (2-3), 185-189.
45. Аксельрод А. С., Сыркин А. Л. Нарушения со стороны сердечно-сосудистой системы и их коррекция у пациентов с алкогольной зависимостью, прекративших употреблять алкоголь //Эффективная фармакотерапия. – 2013. – №. 49. – С. 22-33.
46. Бобожанов, У. А., & Киличев, И. А. (2018). Факторы риска спинальных аномалий у детей. Национальный журнал неврологии, (1), 50-53.
47. Бобожанов, У. А., & Киличев, И. А. (2019). STRUCTURE OF EPILEPTIC VESSELS IN CHILDREN RESIDING IN THE AREAL REGION AREA. Новый день в медицине, (3), 70-72.
48. Бобожанов, У. А., & Киличев, И. А. (2019). Структура эпилептических судорог у детей проживающих в зоне Приаралья. Тиббиётда янги кун. Илмий рефератив, маърифий-маъновий журнал, (3 (27)), 70.
49. Бобожанов, У. А., & Садикова, Г. К. CLINICAL AND DIAGNOSTIC CHARACTERISTICS OF CHILDREN'S EPILEPSY LIVING IN THE ARAL SEA REGION.
50. Бобожанов, У., & Садикова, Г. (2021). Болаларда эпилепсиянинг келиб чиқиши сабаллари, ҳавф омиллари ва кечиши. Неврология, 1(2), 49-51.
51. Болотова М. Н. и др. Синдром обструктивного апноэ сна как независимый фактор риска развития сердечнососудистых осложнений //Кардиоваскулярная терапия и профилактика. – 2009. – Т. 8. – №. 5. – С. 103-112.

52. Дусчанова, З. А., Ражабова, Н. Т., & Шамуратова, Г. Б. (2018). Применение кораксана у больных с сердечно-сосудистой и легочной патологией. *Вопросы науки и образования*, (11 (23)), 88-90.
53. Ибадуллаев, З. Р., & Шамуратова, Г. Б. (2009). Исследование относительного риска развития инсульта у коренных жителей Хорезмской области Узбекистана. *Врач-аспирант*, 34(7), 541-544.
54. Каерова Е. В. и др. Анализ основных факторов риска развития инсульта //Современные проблемы науки и образования. – 2017. – №. 6. – С. 133-133.
55. Камалидинова, З. У., Мирзаева, Н. С., & Сатимова, Д. М. (2024). РОЛЬ НАПОЛНЕННЫХ ДЕСЕНСИТАЙЗЕРОВ С НЕМА В ТЕРАПИИ ЧУВСТВИТЕЛЬНОСТИ ЗУБОВ. *AMERICAN JOURNAL OF EDUCATION AND LEARNING*, 2(5), 949-952.
56. Киличев, И. А., Адамбаев, З. И., & Матёкубов, М. О. (2022). ДИНАМИКА НЕКОТОРЫХ ЭПИДЕМИОЛОГИЧЕСКИХ ПОКАЗАТЕЛЕЙ ИНСУЛЬТА В ПУСТЫННО-СТЕПНЫХ ЗОНАХ УЗБЕКИСТАНА ЗА ПЕРИОД НЕЗАВИСИМОСТИ РЕСПУБЛИКИ. *Медицинские новости*, (1 (328)), 76-78.
57. Киличев, И. А., Матмуродов, Р. Ж., & Мирзаева, Н. С. (2020). FEATURES OF NEUROLOGICAL AND NEUROPSYCHOLOGICAL DISORDERS AFTER A LIGHT TRAUMATIC BRAIN INJURY. *Новый день в медицине*, (2), 137-141.
58. Киличев, И. А., Худайбергенов, Н. Ю., & Адамбаев, З. И. (2018). Цереброваскулярные заболевания в регионе Приаралья. *Lambert Academic Publishing*, Riga, Latviya.
59. Киличев, И. А., Худайбергенов, Н. Ю., & Адамбаев, З. И. (2015). Мозговые инсульты в экологически неблагоприятных зонах приаралья. *NATIONAL JOURNAL OF NEUROLOGY*, (8), 33-38.
60. Матёкубов, М. О., & Омаров, А. К. М. ТУРЛИ ГЕОГРАФИК ҲУДУДЛАРДА БОШ МИЯ ИНСУЛЬТЛАРИ ЭПИДЕМИОЛОГИЯСИ, ЎЛИМ ВА ЛЕТАЛЛИК КЎРСАТКИЧЛАРИНИНГ ТАҲЛИЛИ. *YfcS^XUca^ aV [[X\cah [fcfV [jXd][h [dd^ XWaUS[*, 97.

61. Мирзаева, Н. С. (2018). ПСИХОНЕВРОЛОГИЧЕСКИЕ НАРУШЕНИЯ В ОТДАЛЕННОМ ПЕРИОДЕ ЧЕРЕПНО-МОЗГОВОЙ ТРАВМЫ (ОБЗОР ЛИТЕРАТУРЫ). In Современные медицинские исследования (pp. 39-43).
62. Орлова А. С. и др. Осведомленность населения о факторах риска и основных симптомах инсульта (обзор литературы) //Профилактическая медицина. – 2015. – Т. 18. – №. 6. – С. 91-96.
63. Остроумова О. Д. Алкоголь-друг или враг? //Эффективная фармакотерапия. – 2013. – Т. 49. – С. 8-12.
64. Ражабова, Н. Т., Шамуратова, Г. Б., & Раджапов, А. А. (2019). Исследование действия карведилола у пациентов с дилатационной кардиомиопатией. *Вопросы науки и образования*, (7 (53)), 206-210.
65. Садикова, Г. К., Таджиев, М. М., & Бобожанов, У. А. (2017). Анализ факторов риска спинальных аномалий у детей. Молодой ученый, (12), 151-153.
66. Худайберганов, Н. Ю., Жаббаров, М. Т., & Матёкубов, М. О. (2017). Неврологическая семиотика у больных железодефицитной анемией тяжелой степени. Национальный журнал неврологии, 1(S11), 54-56.
67. Шамуратова, Г. Б., & Мирзаева, Н. С. (2017). ЧАСТОТА ВСТРЕЧАЕМОСТИ ФАКТОРОВ РИСКА ИНСУЛЬТА ВЗАВИСИМОСТИ ОТ ЛАТЕРАЛИЗАЦИИ ОЧАГА ПОРАЖЕНИЯ. Национальный журнал неврологии, 1(S11), 51-53.