

UDC: 616.831-005+613.81

Influence Of Alcohol Consumption On The Development Of Brain Insult (Literature Review)

Matyokubov Murod Otajonovich, Bobojanov Umidjon Adilbekovich, Niyazmetov

Matrasul Radjabovich

Urgench State Medical Institute, Urgench, Uzbekistan

Abstract: This article analyzes the negative impact of alcohol consumption on human health, especially on the brain and its circulatory system. In particular, the relationship between alcohol products and cerebral strokes is highlighted based on scientific sources. Alcohol consumption leads to increased arterial pressure and increased blood clotting, which can lead to cerebral stroke. The article also provides recommendations for the prevention of stroke through the formation of a healthy lifestyle and the cessation of alcohol use. Research on this topic confirms that serious complications can be prevented by reducing or completely stopping the consumption of alcoholic products.

Keywords: ischemic stroke, hemorrhagic stroke, alcohol, atherosclerosis, vascular endothelium, brain, risk factors.

Cerebral strokes remain one of the most pressing and problematic diseases among all neurological diseases. It is well known that it often leads to death or serious physical disability. Due to the fact that many countries around the world are experiencing an epidemiological transition period, the trends in the spread of stroke have changed dramatically. [15]. In recent years, the number of stroke cases and related deaths has been increasing, especially in economically developing countries [24,28].

How does the consumption of alcoholic products affect the risk of stroke? This question has long intrigued scientists and healthcare professionals. There are different opinions about the effects of alcoholic beverages on the cardiovascular system. On the one hand, it has been shown that moderate alcohol consumption can reduce the risk of myocardial infarction[11], but there are opinions that the relationship between alcohol

consumption and stroke is not clear. On the other hand, there is evidence that excessive alcohol consumption can increase the risk of stroke.

In this article, we explore how different levels and types of alcohol consumption affect the risk of stroke, as well as the methodological features of research on this topic.

There are differing opinions about the impact of alcohol consumption on types of brain strokes. It has been noted in many studies that consuming large amounts of alcoholic products can increase the risk of ischemic stroke [5]. However, there is also evidence that moderate alcohol consumption can reduce this risk [20,29]. This is described as a direct relationship, meaning that if alcohol consumption is not excessive, the risk of ischemic stroke decreases, but excessive consumption increases this risk.

Consumption of large amounts of alcohol can significantly increase the risk of hemorrhagic stroke [3,25]. In particular, excessive drinking increases the risk of parenchymal and subarachnoid hemorrhages [6].

There are also differing opinions about the influence of different types of alcoholic products on the development of brain strokes. Red wine is rich in various phenolic compounds, which have antioxidant properties. These compounds are low-density lipoprotein (LDL), preventing cholesterol oxidation and slowing down the development of atherosclerosis [16]. Also, red wine polyphenols help maintain the health of vascular walls by stopping the sclerosis of vascular smooth muscle cells [7]. The Copenhagen City Heart Study showed that wine consumption is associated with a reduced risk of ischemic stroke, but beer or alcohol was found to have no such effect [27].

The evidence regarding the effects of beer and alcohol on stroke risk is contradictory. Some studies show that they can reduce the risk of ischemic stroke [13,17], while others did not find such a relationship [10,19]. The components and consumption pattern of these drinks may have led to the contradiction of the above opinions.

Many researchers collect information about people's alcohol consumption by directly questioning them. However, the reliability of this method is questionable, as

they can underestimate or overstate the quantity consumed [12]. In addition, alcoholics often deny that they drink too much[21].

Biological indicators can be used for an objective assessment of alcohol consumption. For example, an increase in the level of gamma-glutamyl transferase (GGT) in urine indicates an increase in alcohol consumption[1]. Transferrin, associated with carbohydrate deficiency, also serves as an indicator of alcohol consumption [8,30].

There are also differing opinions about the mechanisms of the influence of alcohol consumption on the human body .

Alcohol consumption can increase blood pressure. High alcohol consumption increases the risk of hypertension, which is the main risk factor for stroke [9,23].

Alcohol affects the blood coagulation system, altering the functions of platelets. Moderate alcohol consumption can reduce blood clotting and increase fibrinolysis, which can reduce the risk of ischemic stroke[18]. However, excessive alcohol consumption increases blood clotting and the risk of thrombus formation.

The antioxidants contained in red wine and some other alcoholic beverages can reduce the effect of oxidizing agents. This can slow the progression of atherosclerosis and reduce the risk of ischemic stroke[4].

However, the risk factors for stroke may have been influenced not only by the consumption of alcoholic products, but more by lifestyle and social factors. That is, wine drinkers can often lead a healthy lifestyle, such as following a healthy diet and being physically active [26]. These factors are likely to confuse the link between alcohol consumption and stroke risk.

Many of the conducted studies are mainly observational in nature, in which it is very difficult to determine the main cause. Further research and cohort studies will help to better assess the relationships by observing participants for a certain period of time [22].

It is very important to control the factors influencing or misleading the results in research. Factors such as smoking, diet, physical activity, and body mass index also affect the risk of stroke, and they must be taken into account [14].

Conclusion.

1. Thus, the evidence of the relationship between the consumption of alcoholic products and the risk of stroke is quite contradictory, which depends on many factors. Consuming large amounts of alcohol increases the risk of ischemic and hemorrhagic stroke. Low or moderate alcohol consumption, especially wine consumption, may reduce the risk of ischemic stroke, but this conclusion may be influenced by misleading factors.
2. Future research should be methodologically sophisticated to further clarify the impact of different levels and types of alcohol consumption on stroke risk. Only then can effective recommendations for public health be developed.

References

1. Beghi, E., Bogliun, G., Cocco, P., Fiorelli, G., Lorini, C., Mandelli, M., & Bellini, A. (1995). Stroke and alcohol intake in a hospital population: a case-control study. *Stroke*, 26 (9), 1691-1696.
2. Caicoya, M., Rodriguez, T., Corrales, C., Cuello, R., & Lasheras, C. (1999). Alcohol and stroke: a community case-control study in Asturias, Spain. *Journal of Clinical Epidemiology*, 52 (7), 677-684.
3. Donahue, R. P., Abbott, R. D., Reed, D. M., & Yano, K. (1986). Alcohol and hemorrhagic stroke: the Honolulu Heart Program. *Total*, 255 (17), 2311-2314.
4. Frankel, E. N., German, J. B., Kinsella, J. E., Parks, E., & Kanner, J. (1993). Inhibition of the oxidation of low-density human lipoprotein by phenolic substances in red wine. *The Lancet*, 341 (8843), 454-457.
5. Gorelick, P. B. (1989). The status of alcohol as a risk factor for stroke. *Stroke*, 20 (12), 1607-1610.

6. Hillbom, M., & Kaste, M. (1982). Alcohol intoxication: A risk factor for primary subarachnoid hemorrhage. *Neurology*, 32 (7), 706-706.
7. Iijima, K., Yoshizumi, M., Hashimoto, M., Akishita, M., Kozaki, K., Ako, J.,... & Ouchi, Y. (2002). Red wine polyphenols inhibit vascular smooth muscle cell migration through two distinct signaling pathways. *Circulation*, 105 (20), 2404-2410.
8. Jousilahti, P., Rastenyte, D., & Tuomilehto, J. (2000). Serum gamma-glutamyl transferase, self-reported alcohol consumption, and the risk of stroke. *Stroke*, 31 (8), 1851-1855.
9. Kilichev, I. A., Matyokubov, M. O., Adambaev, Z. I., Khudayberganov, N. Y., & Mirzaeva, N. S. (2023). Register of stroke in the desert-steppe zones of Uzbekistan. In BIO Web of Conferences (Vol. 65, p. 04002). EDP Sciences.
10. Kilichev, I. A., Matyokubov, M. O., Khudayberganov, N. Y., & Adambaev, Z. I. (2013). BRAIN STROKE IN ECOLOGICALLY UNFAVORABLE AREAS OF THE ARAL SEA REGION. *Schizophr. Bull*, 3, 413-430.
11. Klatsky, A. L. (1999). Is it the drink or the drinker? Circumstantial evidence only raises probability. *The American Journal of Clinical Nutrition*, 69 (1), 2-3.
12. Midanik, L. (1983). Family alcoholism and problem drinking in a national drinking practices survey. *Addictive behaviors*, 8 (2), 133-141.
13. Mukamal, K. J., Ascherio, A., Mittleman, M. A., Conigrave, K. M., Camargo Jr, C. A., Kawachi, I.,... & Rimm, E. B. (2005). Alcohol and risk of ischemic stroke in men: the role of drinking patterns and usual beverages. *Annals of Internal Medicine*, 142 (1), 11-19.
14. Mukamal, K. J., Conigrave, K. M., Mittleman, M. A., Camargo Jr, C. A., Stampfer, M. J., Willett, W. C., & Rimm, E. B. (2003). Roles of drinking pattern and type of alcohol consumed in coronary heart disease in men. *New England Journal of Medicine*, 348 (2), 109-118.
15. Mukherjee D., Patil C. G. Epidemiology and the global burden of stroke // World Neurosurgery. - 2011. - Vol. 76. - No. 6. - P. 85-P90.

16. Nigdikar, S. V., Williams, N. R., Griffin, B. A., & Howard, A. N. (1998). Consumption of red wine polyphenols reduces the susceptibility of low-density lipoproteins to oxidation in vivo. *The American Journal of Clinical Nutrition*, 68 (2), 248-255.
17. Otajonovich, M. M., Taxirovich, J. M., & Adilbekovich, B. U. (2025). RISK FACTORS FOR CEREBRAL STROKE. *MODERN EDUCATIONAL REFORMS AND THEIR PRACTICAL SOLUTIONS: CONFERENCE MATERIALS*, 1 (4), 75-83.
18. Renaud, S. D., & de Lorgeril, M. (1992). Wine, alcohol, platelets, and the French paradox for coronary heart disease. *The Lancet*, 339 (8808), 1523-1526.
19. Reynolds, K., Lewis, B., Nolen, J. D. L., Kinney, G. L., Sathya, B., & He, J. (2003). Alcohol consumption and stroke risk: a meta-analysis. *Total*, 289 (5), 579-588.
20. Sacco, R. L., Elkind, M., Boden-Albala, B., Lin, I. F., Kargman, D. E., Hauser, W. A.,... & Paik, M. C. (1999). The protective effect of moderate alcohol consumption on ischemic stroke. *Total*, 281 (1), 53-60.
21. Simpura, J. (1991). Studying norms and contexts of drinking. *Contemp. Drug Probs.*, 18, 477.
22. Stampfer, M. J., Colditz, G. A., Willett, W. C., Speizer, F. E., & Hennekens, C. H. (1988). A prospective study of moderate alcohol consumption and the risk of coronary disease and stroke in women. *New England Journal of Medicine*, 319 (5), 267-273.
23. Stranges, S., Wu, T., Dorn, J. M., Freudenheim, J. L., Muti, P., Farinaro, E.,... Trevisan, M. (2004). The relationship of alcohol consumption pattern to the risk of hypertension: a population-based study. *Hypertension*, 44 (6), 813-819.
24. Strong, K., Mathers, C., & Bonita, R. (2007). Preventing stroke: saving lives around the world. *The Lancet Neurology*, 6 (2), 182-187.
25. Tahirovich, J. M., Otajonovich, M. M., & Adilbekovich, B. U. (2025). SMOKING OF TOBACCO PRODUCTS AND STROKE RISK (A LITERATURE REVIEW). *MODERN EDUCATIONAL REFORMS AND THEIR PRACTICAL SOLUTIONS: CONFERENCE MATERIALS*, 1 (4), 61-65.

26. Tjønneland, A., Grønbæk, M., Stripp, C., & Overvad, K. (1999). Wine intake and diet in a random sample of 48,763 Danish men and women. *The American Journal of Clinical Nutrition*, 69 (1), 49-54.
27. Truelsen, T., Grønbæk, M., Schnohr, P., & Boysen, G. (1998). Intake of beer, wine, and spirits and risk of stroke: the Copenhagen city heart study. *Stroke*, 29 (12), 2467-2472.
28. Kilichev, I. A., Adambayev, Z. I., & Matyokubov, M. O. (2022). DYNAMICS OF SOME EPIDEMIOLOGICAL INDICATORS OF INSULT IN THE DESERT-DESTLE ZONES OF UZBEKISTAN DURING THE PERIOD OF INDEPENDENCE OF THE REPUBLIC. *Medical News*, (1 (328)), 76-78.
29. Kilichev, I. A., Matmurodov, R. J., & Mirzayeva, N. S. (2020). FEATURES OF NEUROLOGICAL AND NEUROPSYCHOLOGICAL DISORDERS AFTER A LIGHT TRAUMATIC BRAIN INJURY. *New Day in Medicine*, (2), 137-141.
30. Khudayberganov, N. Yu., Jabbarov, M. T., & Matyokubov, M. O. (2017). Neurological semiotics in patients with severe iron deficiency anemia. *National Journal of Neurology*, 1 (S11), 54-56.